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Abstract
We study the Glauber dynamics of Ising spin models with random bonds, on
finitely connected random graphs. We generalize a recent dynamical replica
theory with which to predict the evolution of the joint spin-field distribution,
to include random graphs with arbitrary degree distributions. The theory is
applied to Ising ferromagnets on randomly diluted Bethe lattices, where we
study the evolution of the magnetization and the internal energy. It predicts a
prominent slowing down of the flow in the Griffiths phase, it suggests a further
dynamical transition at lower temperatures within the Griffiths phase, and it is
verified quantitatively by the results of Monte Carlo simulations.

PACS numbers: 02.50.Ey, 05.90.+m, 64.60.Cn, 75.10.Hk

1. Introduction

Finitely connected (FC) spin systems were introduced more than 20 years ago by Viana
and Bray [1] as more realistic alternatives to infinite range (IR) models of spin glasses
[2, 3]. In finitely connected systems the spins are placed on the vertices of a random
graph, and interact only when their vertices are connected; the number of connections per
spin remains finite (on average), even in the thermodynamic limit. This definition endows
finitely connected spin models with a geometry (e.g. vertex neighborhood), a crucial feature
also of finite-dimensional (FD) spin systems, that was absent from infinite range models.
Yet, in contrast to FD spin systems which are notoriously difficult to solve, FC models are
still of a mean field nature and can therefore be studied analytically using methods from
the statistical mechanics of disordered systems. This property reflects the absence of short
loops: in finitely connected spin systems loop lengths are typically of order log(N), so that
the spins live in environments which are locally tree-like, unlike spins in finite-dimensional
systems, and short-range frustration cannot occur. As a result of their analytical accessibility
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the equilibrium properties of finitely connected spin systems are now understood quite well
[4–9]. The mathematical and numerical techniques which originated from these equilibrium
papers were, in turn, generalized and applied in subsequent dynamical studies [10–18].

One of the properties shared by finitely connected and finite-dimensional spin systems is
the presence of Griffiths singularities [19]. In his seminal paper Griffiths showed that in the
diluted Ising ferromagnet, where either sites or bonds of a classical lattice are removed with
some probability 1−p, the magnetization is a non-analytical function of the external field for a
range of temperatures Tc(p) < T < Tc(1), where Tc(p) and Tc(1) are the critical temperatures
marking the P → F transition of the diluted and undiluted systems, respectively. The system
is in a conventional paramagnetic state only for temperatures above Tc(1), where Tc(1) could
be infinite [20]. The temperature interval Tc(p) < T < Tc(1) over which these singularities
occur is called the Griffiths phase [21]. This peculiar behavior of the magnetization [22] and
other thermodynamic functions, which can be observed in real materials [23], is understood
to be caused by the presence in the randomly diluted system of large undiluted spatial regions
(or clusters) of the lattice. In the Griffiths phase these clusters are in an ordered magnetic
state, although the system is globally paramagnetic. The Griffiths singularities are not always
strong1 [20, 22, 25–27] and often difficult to observe experimentally [25], nevertheless this is
possible with modern sampling techniques [28, 29].

In contrast to statics, the effects of large undiluted clusters on the dynamic properties of
diluted spin systems are more drastic. The dynamics in such clusters is very slow because
it requires reversing spins coherently in the entire cluster. In FD spin systems this results in
non-exponential decay of the spin autocorrelation and magnetization functions in the entire
Griffiths region [21, 30–35]. The latter studies concentrated mainly on the derivation of
bounds for the spin autocorrelation function, at large times, with subsequent verification by
Monte Carlo (MC) simulations. The dynamic properties of the Griffiths phase in FC spin
systems remain, to the best of our knowledge and that of others [36], largely unexplored.

In this paper, we generalize recent results obtained within the framework of dynamic
replica theory (DRT) [17] to include random graphs with arbitrary vertex degree distributions,
and apply the generalized theory to the dynamics of diluted ferromagnets in the Griffiths phase.
Our paper is organized as follows. In section 2 we define our finitely connected spin model
and its dynamical equations. In section 3 we close the macroscopic dynamical laws using
the standard assumptions and procedures of DRT. From these closed laws we recover known
results of equilibrium statistical mechanics as stationary solutions in section 3.2, as a test. The
replica-symmetry assumption allows us to take the replica limit n → 0 in section 3.3. The
resulting dynamical theory is applied to the Glauber dynamics of diluted Ising ferromagnet in
section 4. We close with a summary and discussion of our results.

2. Model definitions and dynamic equations

We consider a system of N Ising spins σi ∈ {−1, 1}, which are placed on the vertices of
a finitely connected random graph. Spins interact only when they are connected. Their
microscopic dynamics is described by a master equation for the evolution of the microscopic
state probability in continuous time:

d

dt
pt (σ) =

N∑
i=1

[pt(Fiσ)wi(Fiσ) − pt(σ)wi(σ)] (1)

1 See [24] for a model example where very strong Griffiths effects are found.
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in which σ = (σ1, . . . , σN), Fi denotes the spin-flip operator defined via Fi�(σ) =
�(σ1, . . . ,−σi, . . . , σN), and the quantities wi(σ) are the Glauber transition rates

wi(σ) = 1

2
[1 − σi tanh[βhi(σ)]] (2)

with the local fields

hi(σ) =
∑
j �=i

cij Jij σj + θ. (3)

The parameters β = T −1 and θ define the inverse temperature and a uniform external field,
respectively. The random interactions {cij Jij } are symmetric, namely cij Jij = cjiJji , and
are regarded as a quenched disorder. The interaction strengths Jij are independent random
variables, drawn from a probability distribution P(J ). The random variables cij ∈ {0, 1} are
the entries of an adjacency matrix, with zeroes on the main diagonal, defining the random
interaction graph. The symmetry of the interactions ensures that the process (1) evolves
toward equilibrium, characterized by the Boltzmann measure p∞(σ) ∼ exp[−βH(σ)], with
the Hamiltonian

H(σ) = −
∑
i<j

σicij Jij σj − θ
∑

i

σi . (4)

In this paper we consider FC random graphs where the vertex degrees {ki}, with ki =∑j �=i cij ,
are drawn randomly and independently from an arbitrary probability distribution Pc(k) over
the non-negative integers, with finite first moment c =∑k Pc(k)k. The probability of finding
an adjacency matrix c = {cij } in this random graph ensemble, constrained by the vertex
degrees {ki}, is given by

P(c|{ki}) = 1

Z
∏
i<j

pc(cij )
∏

i

δki ,
∑

j �=i cij
(5)

where Z is a normalization constant, and

∀i < j : pc(cij ) = c

N
δcij ,1 +

(
1 − c

N

)
δcij ,0. (6)

The presence of pc(cij ) in the definition (5) is mathematically convenient in solving the model,
but not essential; it can be transformed away in leading order in N.

We avoid the impossible task of solving the 2N equations (1) directly, and consider an
alternative description of the dynamics in terms of macroscopic observables. In particular, we
consider the evolution in time of the joint spin-field distribution [37], which is given by

D(s, h; σ) = 1

N

∑
i

δs,σi
δ [h − hi(σ)] . (7)

In finitely connected models equipped with the dynamics (1), the macroscopic distribution (7)
will evolve deterministically for N → ∞, according to a macroscopic dynamical equation
[17] of the form

∂

∂t
D(s, h) = 1

2
[1 + s tanh[βh]] D(−s, h) − 1

2
[1 − s tanh[βh]] D(s, h)

+
1

2
c
∑
s ′

∫
dh′[1 − s ′ tanh[βh′]]A[s, s ′;h, h′; s ′]

− 1

2
c
∑
s ′

∫
dh′[1 − s ′ tanh[βh′]]A[s, s ′;h, h′; 0] (8)

3
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with a spin variable s ∈ {−1, 1}, and a field h ∈ R. The dynamical equation (8) is written in
terms of time-dependent kernels D and A, which are defined as follows:

D(s, h) = 1

N

∑
i

〈δs,σi
δ [h − hi(σ)]〉D;t (9)

A[s, s ′;h, h′; s̃] = 1

cN

∑
�,�′

c��′A��′[s, s ′;h, h′; s̃]

A��′[s, s ′;h, h′; s̃] = 〈δs ′,σ�
δs,σ�′ δ[h′ − h�(σ)]δ[h − h�′(σ) + 2J��′ s̃]〉D;t (10)

with s ′ ∈ {−1, 1}, h′ ∈ R and s̃ ∈ {0, s ′}. In these expressions, the sub-shell average

〈f (σ)〉D;t =
∑

σ pt(σ)f (σ)
∏

sh δ [D(s, h) − D(s, h; σ)]∑
σ′ pt(σ′)

∏
sh δ [D(s, h) − D(s, h; σ′)]

(11)

is written in terms of the macroscopic distribution (7) which acts as a constraint on micro-
states2, and the microscopic probability distribution pt(σ). The kernel A is positive semi-
definite, and normalized for N → ∞; it defines the joint spin-field probability distribution of
connected sites. Equation (8) is exact for large N, but not yet closed due to the presence of
microscopic probability pt(σ) in (11).

3. Dynamical replica analysis

3.1. Closure and disorder averaging

In order to solve equation (8) we have to compute the kernel (10). This latter kernel is
dependent on the disorder {cij Jij } and the microscopic state probability pt(σ). To compute A

we make the usual assumptions of the dynamic replica method [37, 17]: (i) the observables
{D(s, h; σ)} are assumed to be self-averaging with respect to the disorder at any time, and (ii)
the microscopic probability pt(σ) is taken to depend on σ only through {D(s, h; σ)}. The
self-averaging assumption leads us to

A[s, s ′;h, h′; s̃] =
〈

1

cN

∑
�,�′

c��′A��′[s, s ′;h, h′; s̃]

〉
{cij Jij }

. (12)

The subsequent elimination of the microscopic probability pt(σ) from the above, followed
by the elimination of the fraction via the replica identity

∑
σ 	(σ)W(σ)

/∑
σ′ W(σ′) =

limn→0
∑

σ1 · · ·∑σn 	(σ1)
∏n

α=1 W(σα) (see e.g. [3] for further examples and discussions
of the replica method as a tool for averaging fractions), allows us to perform the disorder
averages in the term c��′A��′ of equation (10) (see appendix A for details), yielding

〈c��′A��′[s, s ′;h, h′; s̃]〉{cij Jij } =
∑
σ1

· · ·
∑
σn

∫ ∏
αi

[
dHα

i dĥα
i

2π
eiĥα

i Hα
i

]

×
∏
τhα

δ

[
D(τ, h) − 1

N

∑
i

δτ,σ α
i
δ
[
h − Hα

i

]]

× δs ′,σ 1
�
δs,σ 1

�′
δ
[
h′ − H 1

�

]〈
c��′δ

[
h − H 1

�′ + 2J��′ s̃
]
e−i

∑
αi ĥα

i hi (σ
α)
〉
{cij Jij }

= 1

Z
c

N

∑
σ1

· · ·
∑
σn

∫ ∏
αi

{
dHα

i dĥα
i

2π

}
ei
∑

α,i ĥα
i Hα

i −iθ
∑

α,i ĥα
i

2 Here, to simplify notation, we skip explicit mentioning of the intermediate discretization of the fields h in (7),
which is formally required [17].
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×
∏
τhα

δ

[
D(τ, h) − 1

N

∑
i

δτ,σ α
i
δ
[
h − Hα

i

]]

×
∫

dJP (J )δs ′,σ 1
�
δs,σ 1

�′
δ
[
h − H 1

�′ + 2J s̃
]
δ
[
h′ − H 1

�

]
e−iJ

∑
α{ĥα

� σ α
�′ +ĥα

�′σ
α
� }

×
∫ π

−π

∏
i

[
dk̂i

2π
eik̂i ki

]
e−i{k̂�+k̂�′ }

× exp

⎡
⎣ c

2N

∑
ij

{∫
dJP (J ) e−iJ

∑
α{ĥα

i σ α
j +ĥα

j σ α
i }−i{k̂i+k̂j } − 1

}
+ O(N0)

⎤
⎦ . (13)

In the derivation of the above result we have used the integral representation of unity

1 =
∫ ∏

αi

dHα
i dĥα

i

2π
eiĥα

i [Hα
i −hi (σ

α)] (14)

and the integral representation of the Kronecker δ-functions

δki ,
∑

j �=i cij
=
∫ π

−π

dk̂i

2π
eik̂i (ki−

∑
j �=i cij ). (15)

In order to disentangle the N degrees of freedom in equation (13) we next define a replica
density function

P(σ, ĥ, k̂; {σi}, {ĥi}, {k̂i}) = 1

N

∑
i

δσ,σi
δ[ĥ − ĥi]δ[k̂ − k̂i], (16)

where σ = (σ1, . . . , σn), σi = (
σ 1

i , . . . , σ n
i

)
(similarly for the replicated vectors ĥ, ĥi), via

insertion into equation (13) of the following δ-functional unity representation:

1 =
∫ ∏

σ,ĥ,k̂

dP(σ, ĥ, k̂)δ[P(σ, ĥ, k̂) − P(σ, ĥ, k̂; {σi}, {ĥi}, {k̂i})] (17)

which gives, with the shorthands 〈g(J )〉J = ∫ dJP (J )g(J ) and x · y =∑α xαyα ,

〈c��′A��′[s, s ′;h, h′; s̃]〉{cij Jij } = 1

Z
c

N

∫ ∏
τhα

dD̂α(τ, h)

2π/N

∫ ∏
σ,ĥ,k̂

dP̂ (σ, ĥ, k̂)dP(σ, ĥ, k̂)

2π/N

× exp

[
iN
∑
τ,h,α

D̂α(τ, h)D(τ, h) + iN
∑

σ

∫
dĥdk̂P̂ (σ, ĥ, k̂)P (σ, ĥ, k̂)

+
1

2
cN
∑
σ,σ′

∫
dĥ dĥ

′
dk̂ dk̂′P(σ, ĥ, k̂)P (σ′, ĥ

′
, k̂′)

×〈 e−iJ [ĥ.σ′+ĥ
′
.σ]−i[k̂+k̂′] − 1

〉
J

+ O(N0)

]

×
∑
σ1

· · ·
∑
σn

∫ ∏
i

[
dH idĥi

2π

]∫ π

−π

∏
i

[
dk̂i

2π
eik̂i ki

]
exp

[
i
∑

i

ĥi . {H i − θ}
]

× exp

[
−i
∑
τ,h,α

D̂α(τ, h)
∑

i

δτ,σ α
i
δ
[
h − Hα

i

]− i
∑

i

P̂ (σi , ĥi , k̂i )

]

×δs ′,σ 1
�
δs,σ 1

�′
δ
[
h′ − H 1

�

]〈
δ[h − H 1

�′ + 2J s̃]e−iJ [ĥ�.σ�′ +ĥ�′ .σ�]
〉
J

e−i{k̂�+k̂�′ }, (18)

5
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where H i = (H 1
i , . . . , Hn

i ). Inserting the above result into the sum (10), followed by further
manipulations (see appendix B for details), leads us to the path integral

A[s, s ′;h, h′; s̃] = lim
N→∞

lim
n→0

1

Z

[
1

2π

]N ∫
{dP dP̂ dD̂} eN[{P,P̂ ,D̂}]+O(N0)

×
⎧⎨
⎩
∑

k,k′�0

Pc(k)Pc(k
′)
∑
σ,σ′

∫
dH dH ′ dĥ dĥ

′

×M[H, ĥ, σ|k − 1, θ ]M[H ′, ĥ
′
, σ′|k′ − 1, θ ]

× δs ′,σ1δs,σ ′
1
δ[h′ − H1]〈δ[h − H ′

1 + 2J s̃] e−iJ [ĥ.σ′+ĥ
′
.σ]〉J

×
[∑

σ,σ′

∫
dH dH ′ dĥ dĥ

′
M[H, ĥ, σ|k, θ ]M[H ′, ĥ

′
, σ′|k′, θ ]

]−1

+ O(N−1)

⎫⎬
⎭

(19)

where  is the macroscopic saddle-point surface

[{P, P̂ , D̂}] = i
∑
τ,h,α

�hD̂α(τ, h)D(τ, h) + i
∑

σ

∫
dĥ dk̂P̂ (σ, ĥ, k̂)P (σ, ĥ, k̂)

+
1

2
c
∑
σ,σ′

∫
dĥ dĥ

′
dk̂ dk̂′P(σ, ĥ, k̂)P (σ′, ĥ

′
, k̂′)〈 e−iJ [ĥ.σ′+ĥ

′
.σ]−i[k̂+k̂′] − 1〉J

+
∑
k�0

Pc(k) log
∑

σ

∫
dH dĥM[H, ĥ, σ|k, θ ] (20)

and M is an effective single-site measure

M[H, ĥ, σ|k − m, θ ] =
∫ π

−π

dk̂ e−ik̂mM[H, ĥ, σ|k, k̂, θ ]

M[H, ĥ, σ|k, k̂, θ ] = 1

2π
eiĥ.{H−θ}−i

∑
τ,h,α �hD̂α(τ,h)δτ,σα δ[h−Hα ]+ik̂k−iP̂ (σ,ĥ,k̂)

(21)

with H = (H1, . . . , Hn) and m ∈ Z. Finally, we change the order of the limits N → ∞ and
n → 0 in (19) and, with the help of the normalization identity

∑
s,s ′
∫

dh dh′A[s, s ′;h, h′; s̃] =
1, we compute (19) by steepest descent, which gives

A[s, s ′;h, h′; s̃] = lim
n→0

1

ZA

∑
k,k′

Pc(k)Pc(k
′)
∑
σ,σ′

∫
dH dH ′ dĥ dĥ

′

×M[H, ĥ, σ|k − 1, θ ]M[H ′, ĥ
′
, σ′|k′ − 1, θ ]

× δs ′,σ1δs,σ ′
1
δ[h′ − H1]〈δ[h − H ′

1 + 2J s̃]e−iJ [ĥ.σ′+ĥ
′
.σ]〉J

×
[∑

σ,σ′

∫
dH dH ′ dĥ dĥ

′
M[H, ĥ, σ|k, θ ]M[H ′, ĥ

′
, σ′|k′, θ ]

]−1

, (22)

where ZA is a constant that ensures the proper normalization of A. The order parameters
{P, P̂ , D̂} are determined by extremization of the functional  in (20), which leads us to four
functional saddle-point equations

D(σ, h) =
∑
k�0

Pc(k)

∑
σ

∫
dH dĥ M[H, ĥ, σ|k, θ ]δσ,σγ

δ(h − Hγ )∑
σ

∫
dH dĥ M[H, ĥ, σ|k, θ ]

(23)

6
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P(σ, ĥ, k̂) =
∑
k�0

Pc(k)

∫
dHM[H, ĥ, σ|k, k̂, θ ]∑

σ

∫
dH dĥ M[H, ĥ, σ|k, θ ]

(24)

P̂ (σ, ĥ, k̂) = icQ(σ, ĥ, k̂) (25)

Q(σ, ĥ, k̂) =
∑
σ′

∫
dĥ

′
dk̂′P(σ′, ĥ

′
, k̂′)〈 e−iJ [ĥ·σ′+ĥ

′ ·σ]−i[k̂+k̂′] − 1〉J . (26)

Relations (25) and (26) allow us to relate the order parameter P(σ, ĥ, k̂) to its conjugate
P̂ (σ, ĥ, k̂), and thereby remove the latter from the measure M (21). Furthermore, assuming
that the function D̂α(s, h) is well behaved in the sense that

∑
h �hDα(s, h)g(h) →∫

dhDα(s, h)g(h) for �h → 0, we have

M[H, ĥ, σ|k, k̂, θ ] = 1

2π
eiĥ·{H−θ}−i

∑
α D̂α(σα,Hα)+ik̂k+cQ(σ,ĥ,k̂) (27)

in definition (21).
The conjugate parameters D̂α(σ, h) and P̂ (σ, ĥ, k̂) in our replica theory play the role of

Lagrange multipliers enforcing the normalization of the joint spin-field distribution D(σ, h)

and of the replica density function P(σ, ĥ, k̂). The physical meaning of the density P(σ, ĥ, k̂)

is not yet clear due to the presence of the vector ĥ and the parameter k̂. However, we note that
in our theory only the Fourier transforms

∫
dĥ e−ix·ĥ ∫ π

−π
dk̂ e−ik̂P (σ, ĥ, k̂) of this function

are relevant, where x ∈ R
n.

3.2. Equilibrium

In this section we show that the equilibrium solution of the model (4) is also a stationary
solution of our dynamic equation (8). This is done in two steps. First, we show that the
equilibrium replica theory of the model under study is a special case of our dynamical replica
theory. In order to do this, we make an ansatz as in [37]:

e−i
∑

α D̂α(σα,Hα) = e
1
2 β
∑

α σα{Hα+θ} (28)

and evaluate the Fourier transform of the replica density (24), namely∫
dĥ e−ix · ĥ

∫ π

−π

dk̂ e−ik̂mP (σ, ĥ, k̂) (29)

for x ∈ R
n and m ∈ Z. Using the saddle-point equation (24) for the order parameter function

P(σ, ĥ, k̂), combined with the Fourier transform of the measure M (see appendix C for details),∫
dĥ e−ix · ĥ

∫ π

−π

dk̂ e−ik̂mM[H, ĥ, σ|k, k̂, θ ]

= e−cck−m

(k − m)!

k−m∏
�=1

[∑
σ�

∫
dĥ� dJ�P (J�)

∫ π

−π

dk̂�P (σ�, ĥ�, k̂�) e−ik̂� e−iJ�ĥ�·σ
]

× (2π)nδ

[
H −

∑
�

J�σ� − θ − x

]
e−i

∑
α D̂α(σα,Hα) (30)

leads us to the desired result for (29)∫
dĥ e−ix · ĥ

∫ π

−π

dk̂ e−ik̂mP (σ, ĥ, k̂) =
∑
k�m

Pc(k)
1

Mk

k!

(k − m)!
c−m e

1
2 βσ·{∑� J�σ�+2θ+x}

×
k−m∏
�=1

[∑
σ�

∫
dĥ� dJ�P (J�)

∫ π

−π

dk̂�P (σ�, ĥ�, k̂�) e−ik̂� e−iJ�ĥ�·σ
]

(31)
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given the ansatz (28), where we define

Mk =
∑

σ

k∏
�=1

[∑
σ�

∫
dĥ� dJ�P (J�)

∫ π

−π

dk̂�P (σ�, ĥ�, k̂�) e−ik̂� e−iJ�ĥ�·σ
]

e
1
2 βσ·{∑� J�σ�+2θ}.

(32)

Solving equation (31) for m = 1 yields a very useful equality,∫
dĥ e−ix · ĥ

∫ π

−π

dk̂ e−ik̂P (σ, ĥ, k̂) =
∫ π

−π

dk̂ e−ik̂P (σ, k̂) e
1
2 βσ · x (33)

which allows us to compute the integrals over {ĥ�} in (31), giving∫
dĥ e−ix · ĥ

∫ π

−π

dk̂ e−ik̂mP (σ, ĥ, k̂)

=
∑
k�m

Pc(k)
k!

(k − m)!
c−m

[∑
σ′ P̃ (σ′)

∫
dJP (J ) eβJσ·σ′]k−m

eβσ·θ e
1
2 βσ ·x∑

σ′′
[∑

σ′′′ P̃ (σ′′′)
∫

dJP (J ) eβJσ′′ ·σ′′′]k eβσ′′ ·θ
(34)

with the shorthand P̃ (σ) = ∫ π

−π
dk̂ e−ik̂P (σ, k̂). Now for x = (0, . . . , 0) and m = 1

equation (34) acquires the form

P̃ (σ) =
∑
k�1

Pc(k)k

c

[∑
σ′ P̃ (σ′)

∫
dJP (J ) eβJσ·σ′]k−1

eβσ·θ∑
σ′′
[∑

σ′′′ P̃ (σ′′′)
∫

dJP (J ) eβJσ′′ ·σ′′′]k eβσ′′ ·θ
(35)

which is exactly the order parameter equation as found in equilibrium [38].
The second part of our proof consists in showing that the ansatz (28) also leads to a

stationary solution of our present dynamic equation (8). For this purpose we compute the
saddle-point equations for the joint spin-field probability distributions (22) and (23), given our
ansatz. The result of this calculation (see appendix D for details) allows us to write these two
equations in the form

D(s, h) = eβsh	[h], (36)

A[s, s ′;h, h′; s̃] = 〈 eβs(h+2J s̃)+βs ′h′−βJss ′
�[h + 2J s̃ − J s ′;h′ − J s]〉J , (37)

respectively, where all complicated terms dependent on the replicas are contained in the two
functions 	 and � (which are defined in appendix D). Inserting (36) and (37) into the right-
hand side of the dynamic equation (8), followed by further manipulations (see appendix E),
leads us to the equality ∂

∂t
D(s, h) = 0 for all s ∈ {−1, 1} and h ∈ R, as claimed. Thus, the

equilibrium solution of the model (4) indeed defines a stationary state of the dynamics (8).

3.3. Replica symmetry

In order to take the n → 0 limit in equations (22)–(24) we assume replica symmetry (RS). For
the conjugate order parameters D̂α(s,H), which are dependent only on a single replica index
and expected to be imaginary, this translates into

D̂α(s,H) = i log d(s,H). (38)

The replica density P(σ, ĥ, k̂) depends on one discrete vector σ and one continuous vector ĥ
in replica space. The parameter k̂ is a scalar variable coupled to the vertex degree k, which is a
random variable. Replica symmetry demands that the order parameter P(σ, ĥ, k̂) is invariant

8
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under permutation of the replica indices, for any value of k̂, which implies [8, 39] that it is of
the general form

P RS(σ, ĥ, k̂) =
∫

{ dP } W [{P }; k̂]
n∏

α=1

P(σα, ĥα), (39)

where W [{P }; k̂] is a functional distribution, which must be normalized according to
∫ { dP }∫ π

−π
dk̂W [{P }; k̂] = 1. It turns out that also the Fourier transform

∫ π

−π
dk̂W [{P }; k̂] e−ik̂ of this

functional distribution is normalized3, which is very convenient for our further calculations.
The RS ansatz (38) and (39) allow us to take the replica limit n → 0 in equations (22)–

(24). The Fourier transform
∫ π

−π
dk̂ e−ik̂mM[H, ĥ, σ|k, k̂, θ ], where m ∈ Z, is the main

ingredient of these equations. We can easily compute its RS version using result (30), leading
to∫ π

−π

dk̂ e−ik̂mM RS[H, ĥ, σ|k, k̂, θ ]

= e−cck−m

(k − m)!

∫ k−m∏
�=1

[
dJ�P (J�) { dP�}

∫ π

−π

dk̂�W [{P�}; k̂�] e−ik̂�

]

×
n∏

α=1

⎧⎨
⎩d(σα,Hα) eiĥα{Hα−θ}

k−m∏
�=1

[∑
σα

�

∫
dĥα

� P�

(
σα

� , ĥα
�

)
e−iJ�[ĥα

� σα+ĥασ α
� ]

]⎫⎬
⎭ .

(40)

Now we can use (40) and the saddle-point equation (24) to solve for the functional distribution
W [{P }; k̂]. However, it is clear from (40) that all the equations of our theory are dependent
only on

∫ π

−π
dk̂W [{P }; k̂] e−ik̂m, rather than on the distribution W [{P }; k̂] itself. Thus for

m ∈ Z we define

W [{P }|m] =
∫ π

−π

dk̂W [{P }; k̂] e−ik̂m (41)

and compute this object (see appendix F), which leads us to the equation

W [{P }|m] =
∑
k�m

Pc(k)
k!

(k − m)!
c−m

∫ k−m∏
�=1

[ dJ�P (J�) { dP�} W [{P�}|1]]
∏
σ,ĥ

δ

[
P(σ, ĥ)

−
∫

dHd(σ,H) eiĥ[H−θ]∏k−m
�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�[ĥ�σ+ĥσ�]

]
Z[{P1, . . . , Pk−m}]

]
(42)

where m ∈ {0, 1}, and Z[· · ·] is a normalization constant given by

Z[{P1, . . . , Pk−m}] = 2π
∑
σ ′

k−m∏
�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�ĥ�σ

′
]

d

(
σ ′,
∑

�

J�σ� + θ

)
. (43)

It is easy to verify that for m ∈ {0, 1} the functional distribution (42) is normalized for any
vertex degree distribution Pc(k), provided the latter satisfies

∑
k Pc(k)k = c.

3 This can be shown by substituting (39) into the function  (20), followed by expanding this function for small n.
The desired result

∫ { dP } ∫ π

−π
dk̂W [{P }; k̂] e−ik̂ = 1 then follows from solving the saddle-point equations for the

O(n0) part of .

9
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Next we compute the kernels (22) and (23) under the RS ansatz. This is done by using
(40) in both, followed by the replica limit (see appendix F), giving

D(σ, h) =
∑
k�0

Pc(k)

∫ k∏
�=1

[ dJ�P (J�) { dP�} W [{P�}|1]]

×d(σ, h)
∏k

�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e− iJ�ĥ�σ

]
δ
(
h −∑� J�σ� − θ

)
∑

σ

∏k
�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e− iJ�ĥ�σ

]
d
(
σ,
∑

� J�σ� + θ
) (44)

and

A[s, s ′;h, h′; s̃] =
∑

k,k′�1

Pc(k)k

c

Pc(k
′)k′

c

∫
dJP (J )

×
[∫ k−1∏

�=1

[ dJ�P (J�) { dP�} W [{P�}|1]]

]

×
[∫ k′−1∏

r=1

[
dJ ′

rP (J ′
r ) { dQr} W [{Qr}|1]

] ]

×
∑
σ,σ ′

k−1∏
�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�ĥ�σ

]
d(s ′, h′)

×
k′−1∏
r=1

[∑
σr

∫
dĥrQr(σr , ĥr ) e−iJ ′

r ĥr σ
′
]

d(s, h + 2J s̃)

× δs ′,σ δs,σ ′δ

[
h′ −

∑
�

J�σ� − θ − Jσ ′
]

δ

[
h −

∑
r

J ′
rσr − θ − Jσ + 2J s̃

]

×
{∑

σ,σ ′

k−1∏
�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�ĥ�σ

]
d(σ,

∑
�

J�σ� + θ + Jσ ′)

×
k′−1∏
r=1

[∑
σr

∫
dĥrQr(σr , ĥr ) e−iJ ′

r ĥr σ
′
]
d

(
σ ′,
∑

r

J ′
rσr + θ + Jσ

)}−1

(45)

where s̃ ∈ {0, s ′}. Equations (42)–(45) constitute the final analytic results of the RS theory
in this section. The results of a similar dynamical study [17], which was carried out for
Poissonian graphs only, are easily recovered from the present more general equations, by
using the equality∑

k�m

Pc(k)
k!

(k − m)!
c−mak−m =

∑
k�0

Pc(k)ak (46)

(which holds for all m ∈ {0, 1, . . . , } for the Poisson vertex degree distribution, i.e. when
Pc(k) = e−cck/k!), throughout formulae (42)–(45).

The solution of our dynamic equation (8) requires the computation of the kernel (45) at
every instance of time t. In order to compute this kernel we have to solve the saddle-point
equations (42) and (44) for the functional distribution W and the function d(s, h), given the
instantaneous values of the joint spin-field distribution D(s, h) at time t. These equations are
integro-functional, and analytic solution is generally ruled out. However, we can solve them
numerically [17] using the population dynamics [7] algorithm. In order to apply this latter

10
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numerical method efficiently we may transform W → W̃ and P̂ (σ |x) → ∫
dĥP (σ, ĥ) e− iĥx

in equations (42)–(45), according to4

W̃ [{P̂ }|1] =
∫

{ dP } W [{P }|1]
∏
σx

δ

[
P̂ (σ |x) −

∫
dĥP (σ, ĥ) e− iĥx

]
. (47)

Upon substitution of (42) into (47) we can easily derive the functional relation for (47), which
is given by

W̃ [{P̂ }|1] =
∑
k�1

Pc(k)k

c

∫ k−1∏
�=1

{ dJ�P (J�){dP̂�}W̃ [{P̂�}|1]}

×
∏
σx

δ

[
P̂ (σ |x) −

∏k−1
�=1

{∑
σ�

P̂�(σ�|J�σ )
}
d
(
σ,
∑k−1

�=1 J�σ� + θ + x
)

Z[{P̂1, . . . , P̂k−1}]

]
(48)

where Z[{P̂1, . . . , P̂k−1}] = ∑
σ

∏k−1
�=1

{∑
σ�

P̂�(σ�|J�σ )
}
d
(
σ,
∑k−1

�=1 J�σ� + θ
)
. The

normalization of W̃ is seen to be built into this relation, however the functional arguments
P̂ (σ |x) are only normalized for x = 0.

4. Dynamics of the diluted Ising ferromagnet in the Griffiths phase

As an explicit application of the theory derived in previous sections, we now study the Glauber
dynamics of the diluted Ising ferromagnet on the Bethe lattice.

4.1. The model and its equilibrium properties

We consider a model of an Ising ferromagnet characterized by the following Hamiltonian:

H(σ) = −
∑
〈ij〉

Jijσiσj − θ
∑

i

σi . (49)

The sum is over all links of the Bethe lattice with connectivity k. The bonds Jij are random
and statistically independent: Jij = J with probability p and Jij = 0 with probability 1 − p.
The lattice contains only finite size clusters for p < pc, where pc is the percolation threshold
given by pc = 1/(k − 1) for the Bethe lattice [40], whereas the giant cluster appears for
p > pc. The density of the finite clusters of bond-size n is also known for the present model
[40], and asymptotically given by

Wn(p, k) ∼ n− 5
2 e−nA(p,k)(n → ∞) (50)

where

A(p, k) = ln

[
(k − 2)k−2

(k − 1)k−1p(1 − p)k−2

]
. (51)

For p = pc we have A(p, k) = 0 and the asymptotic form (50) of the density Wn(p, k) is
independent of k. The model (49) has paramagnetic and ferromagnetic phases, which are
separated by the critical boundary [41]

Tc(p) = J/ tanh−1(pc/p). (52)

The critical temperature of the undiluted Ising ferromagnet on the Bethe lattice is simply
Tc(1). Thus the Griffith phase of the model (49) is given by the range of temperatures

4 Here we assume that for x ∈ R the Fourier transforms
∫

dĥP (σ, ĥ) e− iĥx are real valued, which is certainly true
in equilibrium (see section 3.2) and is a self-consistent assumption for any time.
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Tc(p) < T < Tc(1). The magnetization in the Griffiths phase and in the paramagnetic phase
(i.e. for T > Tc(1)) vanishes, and without an external field (i.e. for θ = 0) the internal energy
is given by

〈H(σ)〉 = −1

2
pk tanh(J/T ), (53)

where the angular brackets define a thermal average (expression (53) is easily derived from
the free energy in [38]). The presence of Griffiths singularities in the low temperature part of
Griffiths region was demonstrated in [41] by studying the density of Yang–Lee zeroes [42, 43].
Moreover, the authors of [41] obtained an exact expansion for the cluster magnetizations, which
was used in arguments by Harris [22] for the site-diluted version of this problem, within the
cavity approach. The presence of rare large clusters in the diluted Bethe lattice is responsible
for the Griffiths effects in this model [41]. This singularity, however, is very weak (∼e−const/|θ |)
and is difficult to observe in equilibrium [25]. In this paper, we consider the Glauber dynamics
of the diluted Ising ferromagnet (49) in the paramagnetic and Griffiths phases. To connect
our dynamical theory, which was developed for random graphs parameterized by an arbitrary
vertex degree distribution, with the equilibrium studies of this problem as carried out for
Bethe lattices, we note that in the infinite system size limit N → ∞ the random regular graphs
defined by Pc(k) = δk,c asymptotically approach Bethe lattices [44].

4.2. Equations of the DRT for random regular graphs with dilution

We can derive the order parameter equations (42), (44) and (45) for the diluted Ising
ferromagnet simply by inserting into these three general equations the special choices Pc(k) =
δk,c and P(J�) = pδ(J� −J ) + qδ(J�), where p ∈ [0, 1] and q = 1 −p. Equation (42) for the
order parameter function W is then simplified by summation over k. If we also replace c → k

(since the non-diluted graph is regular), this leads us to

W [{P }|1] =
∑

τ1,...,τk−1

P(τ1, . . . , τk−1)

∫ k−1∏
�=1

[{ dP�} W [{P�}|1]]
∏
σ,ĥ

δ

[
P(σ, ĥ)

−
∫

dHd(σ,H) eiĥ[H−θ]∏k−1
�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJτ�[ĥ�σ+ĥσ�]

]
Z[{P1, . . . , Pk−1}]

]
(54)

where we define the probability function

P(τ1, . . . , τk) = p
∑k

�=1 δτ�,1qk−∑k
�=1 δτ�,1 (55)

with the binary variable τ ∈ {1, 0}. We note that in equation (54) the terms with τ� = 0
do not contribute, since P�(σ�, ĥ�) are normalized by definition. Finally, we transform
W [{P }|1] → W̃ [{P̂ }|1] in equation (54), according to the definition

W̃ [{P̂ }|1] =
∫

{ dP } W [{P }|1]
∏
σσ ′

δ

[
P̂ (σ |σ ′) −

∫
dĥP (σ, ĥ) e−iĥJσ ′

]
, (56)

where σ, σ ′ ∈ {−1, 1}, which leads us to an equation for the functional distribution of Fourier
transforms:

W̃ [{P̂ }|1] =
∑

τ1,...,τk−1

P(τ1, . . . , τk−1)

∫ k−1∏
�=1

[{ dP̂�}W̃ [{P̂�}|1]]

×
∏
σσ ′

δ

[
P̂ (σ |σ ′) −

∏k−1
�=1

{∑
σ�

P̂�(σ�|τ�σ )
}
d
(
σ, J

∑k−1
�=1 τ�σ� + θ + Jσ ′)∑

σ ′′
∏k−1

�=1

{∑
σ�

P̂�(σ�|τ�σ ′′)
}
d
(
σ ′′, J

∑k−1
�=1 τ�σ� + θ

)
]

.

(57)
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We can in fact get rid of the τ� variables entirely, which gives us an alternative representation
of the equation above

W̃ [{P̂ }|1] =
k−1∑
k′=0

Bk−1(k
′)
∫ k′∏

�=1

[{ dP̂�}W̃ [{P̂�}|1]]

×
∏
σσ ′

δ

[
P̂ (σ |σ ′) −

∏k′
�=1

{∑
σ�

P̂�(σ�|σ)
}
d
(
σ, J

∑k′
�=1 σ� + θ + Jσ ′)∑

σ ′′
∏k′

�=1

{∑
σ�

P̂�(σ�|σ ′′)
}
d
(
σ ′′, J

∑k′
�=1 σ� + θ

)
]

(58)

where Bk−1(k
′) is the binomial distribution

Bk−1(k
′) =

(
k − 1

k′

)
pk′

qk−1−k′
. (59)

This result reflects the fact that the distribution of the vertex degrees in the random regular
graph of degree k with the bond dilution is indeed the binomial Bk(k

′). The fields (3) for
the model (49) take the values Jn + θ , where n ∈ {−k, . . . , k}, allowing us to write the joint
spin-field probability distributions (44) and (45) in the form

D(s, h) =
k∑

n=−k

P (s, n)δ(h − Jn − θ) (60)

A[s, s ′;h, h′; s̃] =
k−1∑

n=−k+1

k−1∑
n′=−k+1

〈A[s, s ′; n, n′|τ ]δ[h′ − Jn′ − θ − Jτs]

× δ[h + 2Jτ s̃ − Jn − θ − Jτs ′]〉τ (61)

where 〈· · ·〉τ =∑τ P (τ) . . . , with P(τ) defined in (55), and

P(s, n) =
∑

τ1,...,τk

P (τ1, . . . , τk)

∫ k∏
�=1

[{
dP̂�

}
W̃ [{P̂�}|1]

]

×
d(s, Jn + θ)

∏k
�=1

[∑
σ�

P̂�(σ�|τ�s)
]
δn;∑k

�=1 τ�σ�∑
σ

∏k
�=1

[∑
σ�

P̂�(σ�|τ�σ )
]
d
(
σ, J

∑
� τ�σ� + θ

) (62)

A[s, s ′; n, n′|τ ] =
∑

τ1,...,τk−1

P(τ1, . . . , τk−1)

∫ k−1∏
�=1

[{ dP̂�}W̃ [{P̂�}|1]]

×
∑

τ ′
1,...,τ

′
k−1

P(τ ′
1, . . . , τ

′
k−1)

∫ k−1∏
r=1

[{ dQ̂r}W̃ [{Q̂r}|1]]

×
k−1∏
�=1

[∑
σ�

P̂�(σ�|τ�s
′)

]
d(s ′, Jn′ + θ + Jτs)δn′;∑k−1

�=1 τ�σ�

×
k−1∏
r=1

[∑
σr

Q̂r (σr |τ ′
r s)

]
d(s, Jn + θ + Jτs ′)δn;∑k−1

r=1 τ ′
r σr

×
{∑

σ,σ ′

k−1∏
�=1

[∑
σ�

P̂�(σ�|τ�σ )

]
d

(
σ, J

k−1∑
�=1

τ�σ� + θ + Jτσ ′
)

×
k−1∏
r=1

[∑
σr

Q̂r (σr |τ ′
rσ

′)

]
d

(
σ ′, J

k−1∑
r=1

τ ′
rσr + θ + Jτσ

)}−1

, (63)

13



J. Phys. A: Math. Theor. 42 (2009) 195006 A Mozeika and A C C Coolen

where in deriving probability distributions over the integer fields (62) and (63) we followed
the steps leading to (57). It is easy to show, using equation (57), that the distribution P(s, n) is
the marginal of

∑
τ A[s, s ′; n, n′|τ ]P(τ). The simplified form of the probability distributions

(60) and (61) allows us to reduce our dynamic equation (8) to a system of ordinary differential
equations (see appendix G for details)

d

dt
Pt (s, n) = 1

2
[1 + s tanh[βJn + βθ ]] Pt(−s, n) − 1

2
[1 − s tanh[βJn + βθ ]] Pt(s, n)

+ pk

k−1∑
n′=−k+1

At [s, 1; n + 1, n′|1]
1

2
[1 − tanh[βJ (n′ + s) + βθ ]]

+ pk

k−1∑
n′=−k+1

At [s,−1; n − 1, n′|1]
1

2
[1 + tanh[βJ (n′ + s) + βθ ]]

−pk

k−1∑
n′=−k+1

At [s,−1; n + 1, n′|1]
1

2
[1 + tanh[βJ (n′ + s) + βθ ]]

−pk

k−1∑
n′=−k+1

At [s, 1; n − 1, n′|1]
1

2
[1 − tanh[βJ (n′ + s) + βθ ]]. (64)

Here n ∈ {−k, . . . , k}, and At [s, s ′; n, n′|1] = 0 for n, n′ /∈ {−k + 1, . . . , k − 1}, leading to
four boundary equations. The equations of the dynamical replica theory (57) and (62)–(64)
are now cast into a form which allows us to solve them numerically.

4.3. Numerical results

Here we use the analytic results of the previous section to study the dynamics in the Griffiths
phase of the diluted Ising ferromagnet (49). We solve the dynamical equation (64) for the
probability distribution Pt(s, n) numerically, given the initial values (see appendix H) and
given the boundary conditions of this equation, using Euler’s forward iteration method. At
each iteration step of this method we solve equations (57) and (62), using a population
dynamics algorithm (see appendix I), for the distribution W̃ and the function d. The result is
then used to compute the probability distribution (63) and to iterate the discrete version of the
dynamic equation (64) over the next time step t → t + �t . In order to assess the quality of
our dynamic theory we compare results of our numerical solutions of (64) with the results of
Monte Carlo (MC) simulations. In each simulation we generate a random regular graph of
degree k with N vertices using the algorithm of Steger and Wormald [45]. We then remove
each of the edges from this graph with probability 1 − p, so that on average only pkN/2
edges remain in the resulting diluted random graph. Finally, we perform MC simulations of
the ferromagnetic Ising model defined on the diluted random graph (49) using conventional
Glauber dynamics.

The evolution in time of the magnetization and the energy per spin, as obtained firstly in
the numeric solution of theory and secondly in the MC simulations, is depicted and compared
in figures 1–3. In addition we also compare in these figures the theoretical predictions for
the histograms of fields Pt(s, n) with the corresponding MC results, as measured in the final
stage of each simulation. We observe that the theory correctly predicts both the trajectories
of the macroscopic observables and the distributions of fields obtained in the MC simulations.
Furthermore, one clearly notices the profound differences between the macroscopic dynamics
of the model (49) in the paramagnetic phases (figure 1) versus the Griffiths phase (figure 3).
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Figure 1. Left: evolution of the magnetization and energy per spin for k = 3, p = 0.2, J = 1
and θ = 0. The temperatures are T = 3 (bottom lines) and T = 2 (top lines); the system is
therefore in the paramagnetic phase since the Griffiths is found for T � Tc(1) ≈ 1.8205. Time
is measured in updates per spin. Solid lines represent results of the RS theory. Dashed and
dotted lines denote the averages and averages ± standard deviation, respectively, as measured over
20 MC simulations of systems with N = 106 spins. For clarity we plot only the average MC
magnetization. The size of the symbols is smaller than the error bars. Right: histograms (RS
theory) of the two field distributions P(±1, n) measured at t = 20 compared to the corresponding
MC results (markers with error bars). The top and bottom panels refer to the temperatures T = 3
and T = 2, respectively.

The mesoscopic picture usually put forward to understand the dynamics of spin systems
in the Griffiths phase [36] is that of local spin clusters that can be regarded as independent from
(or only weakly dependent on) the rest of the system. Each such cluster behaves as a finite
(size n) local ferromagnet, with its own ‘local’ ordering temperature Tn. A cluster of size n is
more likely to be found in the disordered mn = 0 state (where mn is its magnetization) above
Tn, and in an ordered mn �= 0 state for T < Tn. At low temperatures the cluster is equally
likely to be in one of its two ground states ±mn, which are related by the reversal σi → −σi

of all spins in the cluster. In order to go from mn to −mn the cluster has to overcome an
energy barrier En. The microscopic time τn required for this operation to occur is given by
the Arrhenius form τn ∼ exp[−En/T ]. The collective behavior of these clusters is thought to
be responsible for the slowing down of the dynamics in the Griffiths phase [36].

The above picture indeed allows us to interpret the results of the present study. Our
numerical results (figures 1–3) refer to regular random graphs of degree k = 3, with dilution
strength p = 1

5 , which is below the percolation threshold pc = 1
2 for this graph. The

simulated system therefore consists of independent clusters of finite size, and the density
Wn(p) of large clusters decays exponentially according to (50). The Griffiths phase of the
model (49) (for k = 3, J = 1 and p = 1

5 ) is the range of temperatures 0 < T < Tc(1),
where Tc(1) = 1.820478(6) is the critical temperature of the corresponding ‘clean’ undiluted
system. Above Tc(1) all clusters are paramagnetic, and the magnetization and the energy
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Figure 2. Left: evolution of the magnetization and energy per spin for k = 3, p = 0.2, J = 1
and θ = 0. The temperatures are T = 1.5 (bottom lines) and T = 1 (top lines), so the system has
entered the Griffiths phase. Time is measured in updates per spin. Solid lines represent results of
the RS theory. Dashed and dotted lines denote the averages and averages ± standard deviation,
respectively, as measured over 20 MC simulations of systems with N = 106 spins. For clarity we
plot only the average MC magnetization. The size of symbols is smaller than the error bars. Right:
histograms (RS theory) of the two field distributions P(±1, n) measured at t = 50 compared to
the corresponding MC results (markers with error bars). The top and bottom panels refer to the
temperatures T = 1.5 and T = 1, respectively.

both relax quickly to their equilibrium values m = 0 and (53), respectively (see figure 1).
The distribution of fields P(s, n) (see figure 1) is symmetric, i.e. P(s, n) = P(−s,−n), as
it should be in equilibrium when θ = 0 in (49). In the Griffiths phase, in contrast, both
paramagnetic and ferromagnetic clusters are present. For short times the paramagnetic and
ferromagnetic clusters evolve to the mn = 0 and mn �= 0 states, respectively. At intermediate
times the magnetizations of paramagnetic clusters simply fluctuate around mn = 0, whereas
the ferromagnetic clusters will ‘flip’ mn → −mn as frequently as the relaxation time of the
cluster τn allows. Larger clusters require more time to ‘flip’ due to their energy barriers being
proportional to their sizes. Furthermore, for lower temperatures the ferromagnetic clusters
tend to stay longer in each of their two ground states ±mn. Eventually the whole system ends
up in the zero global magnetization state. However, how quickly this would happen depends
on the control parameters of the system. In the high temperature region of the Griffiths phase
the ferromagnetic clusters would ‘flip’ frequently, and although the relaxation time of the
order parameters decreases at lower temperatures, it is still relatively quick; see figure 2. We
also observe in this latter figure that the energy attains its equilibrium value, given by (53),
much earlier than the magnetization. This marks the onset of the main stage of the dynamics,
where only the flips mn ↔ −mn of the ferromagnetic clusters are relevant. As we decrease
the temperature further the dynamics becomes very slow, see figure 3. Here the energy has
attained its equilibrium value, but the magnetization has not. The number of ferromagnetic
clusters has increased, and so have the relaxation times τn of those clusters which were already
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Figure 3. Left: evolution of the magnetization and energy per spin for k = 3, p = 0.2, J = 1
and θ = 0. The temperatures are T = 0.5 (bottom lines) and T = 0.25 (top lines), so we have
entered further into the Griffiths phase. Time is measured in updates per spin. Solid lines represent
results of the RS theory. Dashed and dotted lines denote the averages and averages ± standard
deviation, respectively, as measured over 20 MC simulations of systems with N = 106 spins.
Right: histograms (RS theory) of the two field distributions P(±1, n), measured at t = 100,
compared to the corresponding MC results (markers with error bars). The top and bottom panels
refer to the temperatures T = 0.5 and T = 0.25, respectively.

ferromagnetic at higher temperatures. Furthermore, at T = 0.25 we observe that in the MC
simulation the equilibration times diverge with the system size N (at T = 0.5, in contrast, the
system can be still equilibrated on timescales significantly less than the system size). This
suggests the existence of another critical temperature T�, which for the parameters of the system
in this study would be located somewhere in the interval 0.5 < T� < 0.25, that separates the
Griffiths phase into two further distinct regions of relatively slow and relatively fast dynamics,
respectively. A possible mechanism behind this further (dynamic) transition would be that
the number of clusters which are ferromagnetic becomes extensive, combined with diverging
cluster relaxation times. Interestingly, the flow in the energy versus magnetization plane (see
figure 4) for the temperature T = 0.25 is distinct from that observed at higher temperatures,
in terms of an apparently discontinuous direction change, and this is observed in both theory
and simulation. In contrast, in the paramagnetic and high temperature Griffiths regions of this
model the trajectories in the (m,E) plane are smooth. It is not yet clear to what extent the
temperature at which the distinct direction of (m,E) flow sets in is related to the suggested
dynamic transition temperature T� of diverging relaxation times.

5. Summary and conclusions

In this paper, we built on a recent study [17] in which a dynamical replica theory (DRT) was
developed to solve the (sequential) stochastic dynamics of finitely connected Ising spin systems
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Figure 4. Evolution in time of the energy per spin E and the magnetization m, now shown
as trajectories in the (m, E) plane, for k = 3, p = 0.2, J = 1, θ = 0 and temperatures
T = 1, 0.5, 0.4, 0.25 (from bottom to top), all of which correspond to the Griffiths phase. Solid
lines represent the predictions of the RS theory. Dashed lines denote average values measured
over 20 MC simulations of systems with N = 106 spins each. The simulations were run for
100N sequential spin updates, for all temperatures, and the theoretical predictions calculated for
the equivalent real-time duration t ∈ [0, 100].

with random bonds. Here we generalized this theory to include systems on random graphs
defined by arbitrary vertex degree distributions (as apposed to the Poissonnian ones of [17]).
We have used the exact dynamical equation for the joint spin-field probability distribution,
that was derived in [17], as a starting point. We closed this equation following the standard
assumptions of DRT. The resulting macroscopic theory takes the form of a nonlinear diffusion
equation coupled to a functional saddle-point problem, where the latter involves replica density
order parameters that are to be solved at each instance of time. We showed that the results
of equilibrium statistical mechanics [38] can be recovered within our dynamic theory, and
that the equilibrium solution of the model is a stationary point of our macroscopic equations.
The saddle-point equations resulting from making a replica-symmetric ansatz can be solved
numerically by a population dynamics algorithm [7]. The results in [17] for random graphs
with Poissonian degree distributions are easily recovered from our generalized equations. In
principle most of our equations apply also when the external field is time dependent, and
require only the replacement θ → θ(t). This enables it to be used in future for studies of
dynamic transitions and hysteresis effects, see e.g. [46], which is a line of research which we
have not pursued in the present paper.

We have applied our theory to the dynamics of the diluted Ising ferromagnet in the Griffiths
phase. This model is an Ising ferromagnet defined on a random regular graph from which
edges are removed randomly, with some probability 1 − p. The local fields in this model
take integer values, which simplified our dynamic theory to a system of ordinary differential
equations for the joint probability distribution of Ising spins and integer fields. The functional
order parameter of the saddle-point problem is a distribution over real-valued 2 × 2 matrices.
We have solved our dynamic equations numerically for random regular graphs of degree k = 3
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with dilution p = 1
5 , and calculated the evolution in time of the magnetization and the energy

per spin in both the paramagnetic and the Griffiths phases of this model. Dynamic Griffiths
effects are clearly present in the Griffiths phase. The magnetization equilibrates much slower
than the energy, and this discrepancy becomes even more severe in the low temperature region
of the Griffiths phase. In contrast to the paramagnetic phase and higher temperature region
of the Griffiths phase, the energy per spin appears to be no longer a smooth function of the
magnetization in the low temperature region of the Griffiths phase. The equilibration times of
the MC simulation, the results of which are in good agreement with the numeric solutions of
our theory, diverge with the system size in the low temperature region of the Griffiths phase.

The predictions of the dynamical theory presented in this paper for the diluted Ising
ferromagnet in its Griffiths phase are remarkably accurate. To us this is not entirely surprising,
for at least two reasons. First, the dynamic replica theory and its variations have in the past
already proven to be very accurate for ferromagnetic models on regular [12, 14] and Poissonian
[17] random graphs. Second, the extended version of DRT considered here describes the
evolution of the joint spin-field probability distribution. In equilibrium, the cluster expansion
of the magnetization derived in [22] can be recovered within the cavity approach [41], which
is equivalent to the replica method. This suggests that the joint spin-field probability indeed
contains the relevant information about the clusters which is responsible for the slow dynamics
in the Griffiths phase.
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Appendix A. Averaging over disorder

In this section we compute averages over disorder {cij Jij } in equation (13). First, we exploit
the i ↔ j symmetry of the interactions cij Jij to write the disorder-dependent term of this
equation in form more convenient for further manipulations. Second, we write the Kronecker
delta in the definition of the connectivity {cij } disorder (5) in its integral representation (15).
This gives us

〈· · ·〉{cij Jij } = e−iθ
∑

α,i ĥα
i

〈
c��′δ

[
h − H 1

�′ + 2J��′ s̃
]
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i<j cij Jij
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i σ α
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e−i
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i<j cij Jij
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α{ĥα

i σ α
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j σ α
i }〉

{Jij }. (A.1)

Taking the average over connectivity disorder {cij } leads us to

〈· · ·〉{cij Jij } = 1
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, (A.2)

where in the last line of above expression i �= � and j �= �′. Finally, upon re-exponentiating
(A.2) we obtain our desired result for the disorder average in (13):
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α{ĥα

i σ α
j +ĥα
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Appendix B. Computation of the kernel A[ · · · ]

In this appendix, we give details of the calculation which leads to the path integral (19). We
insert our result for the term 〈c��′A��′[· · ·]〉{cij Jij } (18) into the sum (10), which gives

A[s, s ′;h, h′; s̃] = 1
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Next we rescale the conjugate integration variables according to D̂α → D̂α�h, and define the
function

M[H i , ĥi , σi |ki, k̂i , θ ] = 1

2π
eiĥi .{H i−θ}e−i

∑
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i
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i ]+ik̂i ki−iP̂ (σi ,ĥi ,k̂i ) (B.2)

insertion of which into (B.1), followed by further manipulations, leads us to
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dk̂�′M[H�′, ĥ�′ , σ�′ |k�′, k̂�′ , θ ]

× δs ′,σ 1
�
δs,σ 1

�′
δ
[
h′ − H 1

�

]〈
δ
[
h − H 1

�′ + 2J s̃
]
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Now the terms in the sums over �, �′ variables are dependent only on the random connectivity
variables {k�, k

′
�}, which are independent and distributed according to Pc(k), hence by the law

of large numbers we arrive at the result (19).

Appendix C. Calculation of the Fourier transforms

Here we compute the Fourier transforms
∫

dĥ e−ix.ĥ
∫ π

−π
dk̂ e−ik̂mM[H, ĥ, σ|k, k̂, θ ] of the

measure M defined in equation (21), where x ∈ R
n and m ∈ Z. First we expand that part

of the exponential function which depends on Q, which is defined in equation (26). Next we
integrate out the k̂ variables, which leads us to∫
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In the above we used the shorthand Q̃(σ, ĥ) = Q(σ, ĥ, 0) + 1. Raising Q̃ to the power k −m

gives
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(C.2)

Now inserting above result into expression (C.1) and integrating out the ĥ variables yields
equation for the Fourier transform (30).

21



J. Phys. A: Math. Theor. 42 (2009) 195006 A Mozeika and A C C Coolen

Appendix D. The joint spin-field probability distributions in equilibrium

In this section we compute the joint spin-field probability distributions D and A in equilibrium.
We note that both can defined via the Fourier transforms (30) of the measure M. First, we
consider equation for D (23). Using expression (28) for the conjugate parameter D̂α in this
equation, combined with the equality (33), gives us
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∑
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Pc(k)
1

Mk

∑
σ

∫
dH

k∏
�=1

[∑
σ�

∫
dĥ� dJ�P (J�)

×
∫ π

−π

dk̂�P (σ�, ĥ�, k̂�) e−ik̂� e−iJ�ĥ�·σ
]

× δ

[
H −

∑
�

J�σ� − θ

]
e

1
2 βσ·[H+θ]δσ,σγ

δ(h − Hγ )

=
∑
k�0

Pc(k)
1

Mk

∑
σ

∫
dH

k∏
�=1

[∑
σ�

∫
dJ�P (J�)

∫ π

−π

dk̂�P (σ�, k̂�) e−ik̂�

]

× δ

[
H −

∑
�

J�σ� − θ

]
δσ,σγ

δ(h − Hγ ) eβσ.H , (D.1)

where Mk is defined in (32). Summing and integrating over the variables σγ and Hγ ,
respectively, leads us to the equilibrium form (36) of the joint spin-field distribution. In
a similar manner we obtain the equilibrium version of A, which is given by

A[s, s ′;h, h′; s̃] =
∫

dJP (J )
1

ZA

∑
k,k′

Pc(k)k

c

Pc(k
′)k′

c

1

MkMk′

∑
σ,σ′

∫
dH dH ′

×
k−1∏
�=1

[∑
σ�

∫
dJ�P (J�)

∫ π

−π

dk̂�P (σ�, k̂�) e−ik̂�

]
δ

[
H −

∑
�

J�σ� − θ − Jσ′
]

×
k′−1∏
r=1

[∑
σr

∫
dJrP (Jr)

∫ π

−π

dk̂rP (σr , ĥr ) e−ik̂r

]
δ

[
H ′ −

∑
r

Jrσr − θ − Jσ

]

× eβσ ·H+βσ′ ·H ′−βJσ·σ′

× δs ′,σ1δs,σ ′
1
δ[h′ − H1]δ[h − H ′

1 + 2J s̃]. (D.2)

The above result can be written in the form given by equation (37).

Appendix E. Stationary points of the dynamic equation

Here we show that the probability distributions D and A in equilibrium are stationary points
of our dynamic equation (8). First, we consider that part of (8) which is dependent on the joint
spin-field distribution D(s, h) only. Inserting the equilibrium form (36) of this distribution
into the first line on the right-hand side of (8) leads to

1

2
[1 + s tanh[βh]] e−βsh	[h] − 1

2
[1 − s tanh[βh]] eβsh	[h]

= 	[h]{− sinh[βsh] + cosh[βsh] tanh[βsh]}
= 0. (E.1)
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Second, we compute that part of the right-hand side of (8) which is explicitly dependent on
the kernel A[s, s ′, h, h′, s̃] only. Using our equilibrium form (37) of this kernel in the last two
lines of the right-hand side of (8) results in

1

2
c
∑
s ′

∫
dh′[1 − s ′ tanh[βh′]]〈 eβsh+βs ′h′+βJss ′

�[h + J s ′;h′ − J s]〉J

− 1

2
c
∑
s ′

∫
dh′[1 − s ′ tanh[βh′]]〈 eβsh+βs ′h′−βJss ′

�[h − J s ′;h′ − J s]〉J

= 1

2
c eβsh

∫
dJP (J )

∫
dh′

× {([1 − tanh[βh′]] eβh′ − [1 + tanh[βh′]] e−βh′
) eβJs�[h + J ;h′ − J s]

+ ([1 + tanh[βh′]] e−βh′ − [1 − tanh[βh′]] eβh′
) e−βJs�[h − J ;h′ − J s]}

= 0. (E.2)

We conclude that the right-hand side of the dynamic equation (8) is exactly zero for all
s ∈ {−1, 1} and all h ∈ R as soon as the equilibrium relations (36) and (37) hold.

Appendix F. RS calculations

In this section we derive an equation for the functional distribution (41) and compute
the replica symmetric versions of the kernels A and D. First, we compute the functional
distribution W [{P }; |m], where m ∈ Z. For this we consider the Fourier transform∫ π

−π
dk̂ e−ik̂mPRS(σ, ĥ, k̂) of the RS order parameter function. Using result (40) for MRS,

and the saddle-point equation (24), we have∫
{dP }

∫ π

−π

dk̂W [{P }; k̂] e−ik̂m

n∏
α=1

P(σα, ĥα)

=
∑
k�0

Pc(k)

∫
dH

∫ π

−π
dk̂ e−ik̂mMRS[H, ĥ, σ|k, k̂, θ ]∑

σ

∫
dH dĥ MRS[H, ĥ, σ|k, θ ]

=
∑
k�0

Pc(k)
k!

(k − m)!
c−m 1

Mn
k

∫ k−m∏
�=1

[
dJ�P (J�){dP�}

∫ π

−π

dk̂�W [{P�}; k̂�] e−ik̂�

]

×
n∏

α=1

∫
dHαd(σα,Hα) eiĥα{Hα−θ}

k−m∏
�=1

⎡
⎣∑

σα
�

∫
dĥα

� P�(σ
α
� , ĥα

� ) e−iJ�[ĥα
� σα+ĥασ α

� ]

⎤
⎦

=
∫

{dP }
∑
k�0

Pc(k)
k!

(k − m)!
c−m

×
∫ k−m∏

�=1

[
dJ�P (J�){dP�}

∫ π

−π

dk̂�W [{P�}; k̂�]e−ik̂�

]∏
σ,ĥ

δ

[
P(σ, ĥ)

−
∫

dHd(σ,H) eiĥ{H−θ}∏k−m
�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�[ĥ�σ+ĥσ�]

]
Z[{P1, . . . , Pk−m}]

]

× 1

Mn
k

Z[{P1, . . . , Pk−m}]n
n∏

α=1

P(σα, ĥα), (F.1)
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where we have used the shorthands

Mn
k =

∫ k∏
�=1

[
dJ�P (J�){ dP�}

∫ π

−π

dk̂�W [{P�}; k̂�] e−ik̂�

]

×
[∑

σ

∫
dH dĥd(σ,H) eiĥ(H−θ)

k∏
�=1

(∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�[ĥ�σ+ĥσ�]

)]n

(F.2)

and

Z[{P1, . . . , Pk−m}] =
∑

σ

∫
dH dĥd(σ,H) eiĥ(H−θ)

×
k−m∏
�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�[ĥ�σ+ĥσ�]

]

= 2π
∑

σ

k−m∏
�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�ĥ�σ

]
d

(
σ,
∑

�

J�σ� + θ

)
. (F.3)

Solving equation (F.1) for the functional distribution
∫ π

−π
dk̂W [{P }; k̂] e−ik̂m, followed by

taking the replica limit n → 0 in the functions Mn
k and Zn of the resulting expression, then

leads to equation (42).
Second, we compute the RS joint spin-field probability distribution D(s, h). Using the

saddle-point equation (23) for this distribution, combined with the result (40) for MRS, applied
to m = 0, gives us

D(σ, h) =
∑
k�0

Pc(k)

∑
σ

∫
dH dĥ MRS[H, ĥ, σ|k, θ ]δσ,σγ

δ(h − Hγ )∑
σ

∫
dH dĥ MRS[H, ĥ, σ|k, θ ]

=
∑
k�0

Pc(k)
1

Mn
k

∫ k∏
�=1

[
dJ�P (J�){ dP�}

∫ π

−π

dk̂�W [{P�}; k̂�] e−ik̂�

]

×
∏k

�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�ĥ�σ

]
d(σ, h)δ

(
h −∑� J�σ� − θ

)
∑

σ

∏k
�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�ĥ�σ

]
d
(
σ,
∑

� J�σ� + θ
)

×Z[{P1, . . . , Pk}]n (F.4)

where the functions Mn
k and Z[. . .]n are defined by (F.2) and (F.3), respectively. Taking the

replica limit in equation (F.4) leads us to the result (44).
Finally, we compute the RS version of the kernel (22). We consider numerator and

denominator in the average over the vertex connectivities in this equation separately. Using
equality (40) for the function MRS we obtain the numerator

num =
∑
σ,σ′

∫
dH dH ′ dĥ dĥ

′
MRS[H, ĥ, σ|k − 1, θ ]MRS[H ′, ĥ

′
, σ′|k′ − 1, θ ]

× δs ′,σ1δs,σ ′
1
δ[h′ − H1]

〈
δ
[
h − H ′

1 + 2J s̃
]

e−iJ [ĥ·σ′+ĥ
′ ·σ]
〉
J

= e−cck−1

(k − 1)!

∫ k−1∏
�=1

[
dJ�P (J�){ dP�}

∫ π

−π

dk̂�W [{P�}; k̂�] e−ik̂�

]

× e−cck′−1

(k′ − 1)!

∫ k′−1∏
r=1

[
dJ ′

rP (J ′
r ){ dQr}

∫ π

−π

dk̂rW [{Qr}; k̂r ] e−ik̂r

]
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×
〈∑

σ,σ ′

k−1∏
�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�ĥ�σ

]
d

(
σ,
∑

�

J�σ� + θ + Jσ ′
)

×
k′−1∏
r=1

[∑
σr

∫
dĥrQr(σr , ĥr ) e−iJ ′

r ĥr σ
′
]

d

(
σ ′,
∑

r

J ′
rσr + θ + Jσ

)

× δs ′,σ δs,σ ′δ

[
h′ −

∑
�

J�σ� − θ − Jσ ′
]

δ

[
h −

∑
r

J ′
rσr − θ − Jσ + 2J s̃

]

×
{∑

σ,σ ′

k−1∏
�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�ĥ�σ

]
d

(
σ,
∑

�

J�σ� + θ + Jσ ′
)

×
k′−1∏
r=1

[∑
σr

∫
dĥrQr(σr , ĥr ) e−iJ ′

r ĥr σ
′
]

d

(
σ ′,
∑

r

J ′
rσr + θ + Jσ

)}n−1〉
J

(F.5)

and the denominator

den =
∑
σ,σ′

∫
dH dH ′ dĥ dĥ

′
MRS[H, ĥ, σ|k, θ ]MRS[H ′, ĥ

′
, σ′|k′, θ ]

= e−cck

k!

∫ k∏
�=1

[
dJ�P (J�){ dP�}

∫ π

−π

dk̂�W [{P�}; k̂�] e−ik̂�

]

×
[∑

σ

k∏
�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�ĥ�σ

]
d

(
σ,
∑

�

J�σ� + θ

)]n

×e−cck′

k′!

∫ k′∏
r=1

[
dJ ′

rP (J ′
r ){ dQr}

∫ π

−π

dk̂rW [{Qr}; k̂r ] e−ik̂r

]

×
[∑

σ ′

k′∏
r=1

[∑
σr

∫
dĥrQr(σr , ĥr ) e−iJ ′

r ĥr σ
′
]

d

(
σ ′,
∑

r

J ′
rσr + θ

)]n

. (F.6)

Combining these latter two results in (22) and taking the n → 0 replica limit gives equation
(45).

Appendix G. Dynamic equation for the Ising ferromagnet with dilution

Here we show that the macroscopic equation (8) for the Ising spin system governed by (49) can
be reduced to a system of ordinary differential equations. In the present Ising ferromagnet with
dilution (49) the fields (3) can take only discrete values, which implies that the distributions
(7) and (10) can be written in the form (60) and (61), respectively. Inserting (60) and (61) into
both sides of (8) gives

d

dt

k∑
n=−k

Pt (s, n)δ(h − Jn − θ) = 1

2
[1 + s tanh[βh]]

k∑
n=−k

Pt (−s, n)δ(h − Jn − θ)

− 1

2
[1 − s tanh[βh]]

k∑
n=−k

Pt (s, n)δ(h − Jn − θ)
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+
1

2
k
∑
s ′

∫
dh′[1 − s ′ tanh[βh′]]

k−1∑
n=−k+1

k−1∑
n′=−k+1

×〈At [s, s
′; n, n′|τ ]δ[h′ − Jn′ − θ − Jτs]δ[h − Jn − θ + Jτs ′]〉τ

− 1

2
k
∑
s ′

∫
dh′[1 − s ′ tanh[βh′]]

k−1∑
n=−k+1

k−1∑
n′=−k+1

×〈At [s, s
′; n, n′|τ ]δ[h′ − Jn′ − θ − Jτs]δ[h − Jn − θ − Jτs ′]〉τ (G.1)

in which the averages over τ refer to the distribution P(τ) = pδτ,1 + (1−p)δτ,0. We move the
time derivative inside the sum on the left of the above equation. On the right side we average
over τ , take the sums over s ′ and integrate out h′ variables. These manipulations produce

k∑
n=−k

d

dt
Pt (s, n)δ(h − Jn − θ) = 1

2
[1 + s tanh[β(Jn + θ)]]

k∑
n=−k

Pt (−s, n)δ(h − Jn − θ)

− 1

2
[1 − s tanh[β(Jn + θ)]]

k∑
n=−k

Pt (s, n)δ(h − Jn − θ)

+
k−2∑

n=−k

k−1∑
n′=−k+1

1

2
kp[1 − tanh[βJ (n′ + s) + βθ ]]At [s, 1; n + 1, n′|1]δ(h − Jn − θ)

+
k∑

n=−k+2

k−1∑
n′=−k+1

1

2
kp[1 + tanh[βJ (n′ + s) + βθ ]]At [s,−1; n − 1, n′|1]δ(h − Jn − θ)

−
k−2∑

n=−k

k−1∑
n′=−k+1

1

2
kp[1 + tanh[βJ (n′ + s) + βθ ]]At [s,−1; n + 1, n′|1]δ(h − Jn − θ)

−
k∑

n=−k+2

k−1∑
n′=−k+1

1

2
kp[1 − tanh[βJ (n′ + s) + βθ ]]At [s, 1; n − 1, n′|1]δ(h − Jn − θ).

(G.2)

The result (64) follows immediately from the above equation.

Appendix H. Initial conditions

In this appendix, we compute the relevant initial conditions for the system of ordinary equations
(64). We choose an initial microscopic state of the system in which each spin σi is drawn
randomly and independently according to P0(σi) = 1

2 (1 + σim0), where m0 ∈ [−1, 1] is the
prescribed initial magnetization of the whole system, i.e.

P0(σ) =
N∏

i=1

1

2
(1 + σim0). (H.1)

Given (H.1), the spin-field probability distribution P0(s, n) for large Ising ferromagnets defined
on random graphs with vertex degree distribution Pc(k

′) is given by

P0(s, n) = lim
N→∞

∑
σ

P0(σ)
1

N

N∑
i

δs,σi
δn,
∑

j �=i cij σj

= 1

2
(1 + sm0)

∑
k′�0

Pc(k
′)

k′∏
�=1

[∑
σ�

1

2
(1 + σ�m0)

]
δ
n,
∑k′

�=1 σ�
. (H.2)
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For the model (49) in particular, where k is the connectivity of the random regular graph and
p is the dilution, the vertex degree distribution is binomial

Pc(k
′) =

(k

k′
)
pk′

(1 − p)k−k′
. (H.3)

Solving equations (H.2) and (62) for the functional distribution W̃ [{P̂ }|1] and the function
d(s, Jn + θ) then gives

W̃ [{P̂ }|1] =
∏
σ,σ ′

δ

[
P̂ (σ |σ ′) − 1

2
(1 + σm0)

]
(H.4)

d(s, Jn + θ) = 1

2
(1 + sm0) (H.5)

which is the trivial solution of equation (58).

Appendix I. Population dynamics

The joint spin-field probability distribution Pt(s, n) of the diluted ferromagnet (49) evolves
in time according to the system of ordinary differential equations (64). Solving this system
requires computation of the kernel (63), which is dependent on the functional distribution W̃

and the function d (the order parameters). The saddle-point equations (57) and (62) establish
relations between these parameters and their dependence on Pt(s, n). However, solving these
equations analytically is generally ruled out, and one has to solve them numerically using
population dynamics [7].

The population dynamics algorithm was also used in the preceding version of the
dynamical replica theory, as developed for Poissonian random graphs [17]. Here, however, we
take an approach which is slightly different from that in [17]. We note that in our dynamical
theory we use Pt(s, n) to estimate the order parameters W̃ and d. In particular, the values
of the order parameters are considered to be ‘good’ when the saddle-point equation (57) for
the functional distribution W̃ is satisfied, and the probability distribution P(s, n) which is
computed via saddle-point equation (62) equals the instantaneous distribution Pt(s, n). This
suggests that the change made by any numerical algorithm to the order parameters W̃ and
d has to reduce the ‘distance’ between the distributions Pt(s, n) and P(s, n), subject to the
constraints (57) and (62). The Kullback–Leibler (KL) divergence

DKL(Pt ||P) =
∑

s

∑
n

Pt (s, n) log

[
Pt(s, n)

P (s, n)

]
(I.1)

can play the role of a distance in this context, and we may use e.g. a gradient descent algorithm
to minimize this distance, namely

d

dε
d(s, Jn + θ) = − ∂

∂d(s, Jn + θ)
DKL(Pt‖P), (I.2)

where ε defines an ‘algorithmic time’. To solve equations (57) and (62), we use a combination
of both population dynamics and gradient descent. To implement the population dynamics we
create a population of N2 × 2 matrices P̂i(σ |σ ′), where i = 1, . . . ,N , and we initialize the
function d(s, Jn + θ) for s ∈ {−1, 1} and n ∈ {−k, . . . , k}. The initial values of population
{P̂i(σ |σ ′)} and function d(s, Jn + θ) are set to (H.4) and (H.5), respectively, at t = 0. For
t > 0 we simply reuse values from the previous time step. We then update the population of
matrices and the numbers d(s, Jn + θ) until they are stationary, via the following process:
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(i) a number k′ is drawn from the binomial distribution Bk−1(k
′) (59);

(ii) k′ members P̂i(σ |σ ′) are selected randomly and independently from the population;
(iii) a new value for P(σ |σ ′) is calculated according to

P̂new(σ |σ ′) =
∏k′

l=1

{∑
σl

P̂l(σl|σ)
}
d
(
σ, J

∑k′
l=1 σl + θ + Jσ ′)∑

σ ′′
∏k′

l=1

{∑
σl

P̂l(σl|σ ′′)
}
d
(
σ ′′, J

∑k′
l=1 σl + θ

) ; (I.3)

(iv) a member of the population is selected randomly, and replaced with the newly computed
value P̂new(σ |σ ′);

(v) a new function d(s, n) is computed according to

dnew(s, n) = d(s, n) + �ε
d(s, n)

1 + d(s, n)2
[Pt(s, n) − P(s, n)] , (I.4)

where 0 < �ε � 1, and P(s, n) is computed according to (62) by averaging over the
instantaneous values of the population.

The rule (I.4) used to update d(s, n) can be regarded as an approximation of the gradient
descent equation (I.2), which can be derived as follows. First, we use the definition of the KL
divergence (I.1) and equation (62) for P(s, n) to compute the partial derivative in (I.2), giving
(with the shorthand d(s, Jn + θ) → d(s, n))

∂

∂d(s, n)
DKL(Pt‖P) = −Pt(s, n)

d(s, n)

+
∑
s ′

∑
n′

Pt(s
′, n′)

d(s ′, n′)
P (s ′, n′)

∑
τ1,...,τk

P (τ1, . . . , τk)

∫ k∏
�=1

[{ dP̂�}W̃ [{P̂�}|1]]

×
k∏

�=1

[∑
σ ′

�

P̂�(σ
′
�|τ�s

′)

]
δn′,

∑k
�=1 τ�σ

′
�
.

k∏
�=1

[∑
σ�

P̂�(σ�|τ�s)

]
δn,
∑k

�=1 τ�σ�

×
[∑

σ

k∏
�=1

[∑
σ�

P̂�(σ�|τ�σ )

]
d

(
σ, J

∑
�

τ�σ� + θ

)]−2

. (I.5)

The result (I.5) takes a very simple form when there is no disorder and the distribution
W [{P̂ }|1] is a functional delta, where one is led to

d

dε
d(s, n) = 1

d(s, n)
[Pt(s, n) − P(s, n)] . (I.6)

To reduce computational costs we use in our population dynamics algorithm approximation
(I.6), rather than the full version of the gradient descent (I.2) which would have required
computation of (I.5). First, however, expression (I.6) is slightly modified according to
1/d(s, n) → d(s, n)/[1 + d(s, n)2], to prevent unbounded increasing (or decreasing) of �ε

in the discrete version of (I.6). The number of iterations required to solve saddle-point
equations (57) and (62) by the algorithm presented in this section was found to be typically of
order 102N , for the population size N = 104.
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